The Basics of Aluminum Machining

A man in glasses is using a machine

Man wearing safety glasses closely watching milling machine drilling into a block of metal

Whether you must complete a production run of components or need a few prototypes created for testing, aluminum machining is often the first process that comes to mind for metal componentry.

Weighing in at around 170 lbs/cu ft, aluminum, and its alloys, are much more lightweight than the 490 lb/cu ft density of the average steel. Aluminum is soft, non-magnetic, and ductile.

Due to this lower density and increased workability, aluminum is much easier to machine than steel. It can, therefore, decrease machine time, which means an increase in productivity, and generate an all-around more affordable component.

Whether you already know which aluminum alloy to use or could benefit from some expertise in choosing the optimal material for your project, turn to the experts at United Scientific for your precision machined parts in the Twin Cities and surrounding areas.

Keep reading for some more of the basics of aluminum machining.

Chosing your aluminum

How you ultimately end up using your metal component will determine which type of aluminum you select. Some end-use factors to consider include:

  • Does it need to be welded to other parts?
  • Does it need to be resistant to corrosion?
  • What kind of forces will the part need to withstand?
  • Will the material be able to produce the required tolerances for the final part?
  • How complicated is the design?
  • Is the material the best option for all necessary fabrication process steps?

For example, what if welding your component to others is required in its final assembly? Welding is not feasible for many of the strongest alloys. So, 2000 and 7000 series alloys are not an option for this project, as they are not weldable.

Because the 2000 and 7000 series alloys have such high strength and a desirable response to heat treatment, they do make excellent components for the aerospace industry.

Let’s look at another option — alloy 5052. It’s acceptable for welding and has better strength. What truly makes alloy 5052 stand out, though, is its exceptional corrosion resistance, making it an excellent choice for marine applications.

United Scientific works with a wide variety of aluminum alloys for applications across industries ranging from aerospace to recreational equipment. Their experts can help you navigate the matrix of material characteristics to determine the best alloy for your needs.

A dozen different milling tools displayed with cutting edges pointing up

Choosing your tooling

Flute count and helix angle are two fundamental considerations when choosing aluminum machining tooling.

Flute count

Typical end mills for aluminum machining are usually 2 or 3 flute shapes. Higher flute counts do not evacuate chips effectively at faster speeds. However, since you can run aluminum at higher speeds and the alloys usually yield larger chips, the 2 or 3 flute configurations are the optimal choice.

Helix angle

Helix angle is defined as “the constant angle between the tangent to a helix and a generator of the cylinder upon which the helix lies.†This angle ranges from 30 – 45 degrees.

Higher helix angles provide better surface finish and more effective chip evacuation. These properties make higher angles the preferred choice for aluminum finishing.

Resolving typical issues

Long chips, welded chips, and built-up edges are some typical problems associated with aluminum machining. They can be resolved with a few proactive steps.

Long chips

Long chips are problematic as they can get in the way and mar the surface of the finished part. They also pose a safety hazard to the machinist.

The simplest method of eliminating long chips is to change the speed and position of the cutting tools. An additional option can be to employ a chip breaker tool.

A 3-flute, chip breaker tool will leave a semi-finished surface but runs at increased speed and feed rates, allowing time for additional passes to achieve final tolerances.

Welded chips

Welded chips occur when aluminum chips produced during the machining process weld themselves to the flank of the cutting tool. These types of chips are very detrimental to the tooling itself, eventually causing breakage.

Controlling or changing the machining parameters, reducing the amount of heat generated during the fabrication, and making sure you are using the right materials for the process are all used to resolve this particular issue.

Built-up edge

Built-up edges are similar to welded chips, though in this case, the chip welds itself to the actual cutting surface of the tool. This build-up causes scratches to the machined part, an inferior surface finish, and can also ultimately end up breaking the tooling itself.

Similar to the solutions for welded chips, the proper use of coolant is one preventative step. The coolant prevents the materials from reaching a high enough temperature to weld together initially. Higher cutting speeds can be another solution.

Space shuttle still attached to boosters launched as viewed from above

Beyond aluminum

In addition to machining a wide range of aluminum, United Scientific is also proficient at fabricating parts using more exotic alloys such as Inconel and Hastelloy.

Inconel, although much harder to machine, retains its tensile strength up to 2,000°F and is corrosive resistant. These properties make it well suited for extreme applications such as securing the space shuttle’s solid rocket boosters to the launch platform. Inconel alloys are also replacing the steel in the main battery pack contactors at Tesla.

Hastelloy alloys are also highly corrosion resistant, yet still weldable. These alloys are resistant to many aggressive chemicals and acids and suitable for high-temperature and high-pressure wells.

These characteristics make Hastelloy alloys an ideal choice for the pharmaceutical and chemical processing industries and are being used in space shuttle engine components.

Choosing a CNC machining partner

Aluminum machining is a science, and here at United Scientific, we are “Scientific in Process, United in Purposeâ€. We have experts in design, prototyping, fabrication, and inventory management ready to help you and your business successfully fulfill its purpose.

Whether you already know what material to call out on your specifications or would like a second opinion in making sure you have created the optimal part in terms of cost and function, United Scientific will be your partner.

Contact us today to get started on your next fabrication order.

CNC Milling vs. Turning: What’s the Difference?

A man operating a machine in a factory.


Man standing in front CNC milling machine control panel adjusting dials

When you need an accurate, machined part for your project, factory, or product, you may not be concerned with which machines to use or how a CNC milling machine works. Your priority is obtaining the right part for your needs, in the quantity you need, the delivery date you desire, and with quality assurance on which you can count.

At United Scientific, we deliver on all of the above criteria with excellence. We also like to make sure that our customers are informed about all our fabrication methods so they can make an educated decision when choosing a manufacturing partner. Knowledge builds trust, and we strive to instill customer confidence through transparency in our operations.

Determining the right process for your part-making project results in the highest quality component at the lowest cost and on schedule. Today, we’ll look at an overview of the differences between CNC milling and turning — two divergent pathways to parts, but both with nuanced characteristics that make them the right choice for different applications.

We assist our customers with large and small-scale production projects and deliver your parts on time with 99+% accuracy. We serve a wide variety of sectors. Fill out our contact form today to get more information or request a quote from United Scientific for your next manufactured component purchase.

Analog to CNC

Part machining technology has come a long way in a few short decades. Before the advent of CNC applications, machining parts required a significant amount of manual control. A worker would steer a block of material around a fixed rotating or oscillating blade or would move the saw through the raw material on a fixed surface.

Though the principles of milling and turning haven’t changed much since the advent of the saw, milling machines have. CNC cutting technology relies on CAD programming in the design phase of your component.

The part designer then sets the cutting coordinates into G-Code that CNC machines can read and translate to blade, spindle, and bed movements in 3D space. A technician inputs the coordinates into the device and oversees the cutting process, checking for quality and accuracy along the way and in the end product.

This type of automation has revolutionized the accuracy and efficiency of tool cutting.

Read on for a more detailed look at two CNC (Computer Numerical Control) cutting processes, and which one is best for your project.

CNC mill cutting intricate angular pattern into a silver metal disk

CNC milling

Part-milling begins with a block of material, referred to as a blank, secured in place on a tool-bed. In CNC milling, the cutting or shaving blade attaches to a spindle. The spindle spins the tool rapidly and can travel in several axes, depending upon the machine capability.

To cut the part, the tool-bed moves the blank at different angles to the cutting blade to form the desired surfaces and shape the design. The spindle with the cutting tool can also shift to add further detailing capability.

A CNC machine technician enters coordinates into a computer controlling the bed position, and the bed moves in space to the same specifications with each part machined. The cutting blade could have a vertical or horizontal orientation, dependent on the part material and the forces involved in the cutting process for best efficiency and safety.

A CNC milling process works well for precision parts like enclosures, engine components, complex mechanisms, or other detailed cutting.

round metal chucks for lathe

CNC Turning

For parts that require fewer detailed cuts, CNC turning may provide superior and efficient cutting results.

A CNC lathe holds that block of material on a “chuck†and rotates, or “turns†it at high speed. In this application, the blank spins on an axis but remains stationary in space.

A computer-controlled blade contacts the spinning material and moves back and forth across the length of the raw material. The blade begins to carve the desired shape out of the block at specified intervals.

Before the advent of Computer Numerical Control, a worker turned the lathe and carefully shaved the cuts into the part with either a hand-held blade or a more massive cutting tool.

Today’s CNC turning machines can cut multiple parts on a variety of spindles. We can control rotation speeds with more accuracy for exceptional results. Different cutting tools and spindles can reside on the same machine, making the cutting process accurate, more time-efficient, and safer than ever before.

Fascinating fact: turning machines come in several different categories, depending upon the functions they perform and the type of parts best suited to the device. For example, Swiss-type turning machines turn and cut tiny parts for watches, medical equipment, and dental tools.

Further, some turning centers can turn up to four pieces on a standard lathe. Other lathes can machine two differing pieces simultaneously with specialized software.

Male worker leaning over CNC machine watching fabrication process

Which application is best for your project?

When deciding between CNC milling and turning to manufacture your parts, several factors can help you determine the best process:

  • Cost per part: When accuracy matters most, and your part requires many cuts to achieve a perfect fit, CNC milling may be the best option. Though the milling process may be more time-intensive, depending on the complexity of your part, it’s more cost-effective to get each piece correctly machined the first time.
  • Quantity: When you need larger volumes of parts that are a more straightforward design, CNC turning could be the more efficient option. You’ll benefit from controlled accuracy measures, so each piece conforms to the same precise specifications in the shortest time possible.
  • Multi-method part: If you require a highly complex designed piece, a blended application may be best, depending on the specifications for each part of the design.
  • Capacity: If you machine parts in-house in your manufacturing facility, you may need a separate machining partner for larger jobs or specialized parts. Choosing a protocol that allows you to scale up, down, or outsource your projects accordingly is paramount to successful results.

Choose an experienced, accurate CNC partner proficient in milling and turning

When the need to collaborate on your component manufacturing arises, choose a partner with comprehensive capabilities. At United Scientific, we support wide-ranging industries from aerospace to food processing and more.

Contact us today to customize your unique part-machining strategy. Our expert staff and industry expertise ensure cost-effective, accurate results with each client we serve.

 

Design for Manufacturability is Key to CNC Machining

Two men are talking in a factory


Two male engineers having a discussion leaning over a table covered with conical metal parts

You have developed a mechanical solution to a significant challenge in your sector. You think you have a way to make that component less expensive, or those pieces easier to assemble.  This component could result in higher quality, longer-lasting product without increasing cost. A win-win situation seems a foregone conclusion.

If you could put this assembly in place on your company’s product, your device will improve significantly. But, can your solution be manufactured with CNC machining and increase product margins while solving problems?

Here is where Design for Manufacturability (DFM) is critical. When you do your design groundwork effectively, you’ll create your winning process scenario before production starts.

At United Scientific, we incorporate DFM into our prototyping process to ensure that the manufactured components meet the prescribed specifications while maintaining manufacturability and containing costs. Contact our design team today, and let’s get started on that brilliant solution.

Why do Design for Manufacturability?

DFM is the process of designing components so that they are easier to manufacture and result in a better product at a lower cost. The cost savings can come from reduced material, overhead, and labor costs.

It can be tempting to dive into production on the assumption that your estimated savings are accurate. However, launching production without DFM could be a costly mistake.

The design process is responsible for approximately 70% of the manufacturing costs of a product. Decisions made during the production process contribute only about 20%.

Pinning down a component failure during production is much harder than trouble-shooting your component with DFM. Perhaps the fault was caused by something in the design such that current manufacturing processes or tooling can’t produce the item.

It’s also possible an error occurred in the production process itself, causing singular or multiple component flaws.

This failure can mean running multiple testing scenarios, design of experiment type matrices of variables, and results, all while lost material and labor costs pile up.

And, if this particular design solution required multiple components, your losses could multiply quickly. DFM is a proactive solution to this scenario.

Antique key laying on vintage metal gears on a dark background

The key components of DFM

Process

First, you need to choose the right method to manufacture your parts. At a high level, you must consider production volume and general material requirements before production begins.

The production volume of the final component is one key to deciding how you might expedite the manufacturing process. Low volume quantities would most likely require the use of existing equipment and tooling. High volume and longer-range repeatable projects may require increased investment capital into specialized tools, jigs, or dies.

General material requirements are an essential element to consider at this point, as well. Materials like fiberglass, aluminum, or titanium require different machining specs. Does the facility you chose have the capability to work with your preferred medium?

Tolerances are also a factor. Toy wagon parts may require significantly less precision than heart catheters, for example. DFM means that you choose each process step for its tolerance limitations and inspection capabilities.

It’s also imperative to consider design features not suitable for typical CNC machining processes, such as parts with deep cavities or thin walls. These specifications may be better suited for other machining processes or require additional tooling to produce the quality desired.

Design

The first step in DFM is to determine if you need all the parts as initially proposed. If the part count diminishes, the production process simplifies.

There may also be assembly modifications to consider that would reduce the number of interlocking components and fittings. In other words, do you need a nut-bolt-washer fastener across four different openings, when a cotter pin would suffice?

Another cost-saving measure in DFM are off-the-shelf item substitutes. A good question to ask is:  “Are the designed tolerances the only way this component will fit with the others?†Perhaps there is an option of modifying a tolerance, or any of the other components it will be assembled with, to accept a standard, off-the-shelf part.

A cost-benefit analysis is required in this scenario, as modifying another part could entail higher expenses than customizing the one at hand.

Material selection

Hopefully, you determined during the first process selection step what types of materials you will require. Let’s dive a bit deeper into the specifics of your materials.

Here are a few queries to run as you further refine the DFM model:

  • How strong does the material need to be?
  • To what degree does it need to be heat resistant?
  • Have the other components been designed to match, or allow for, the expansion and contraction of the selected materials surrounding it?
  • Does the material need to have any specific surface qualities such as color or reflectivity?

Some of the answers to these questions could depend upon the answers to the following questions as they pertain to the environment.

Environment considerations

Material selection will vary dependent upon the environment in which it will finally be used. Will this component be performing in:

  • Space
  • Seawater
  • A human body
  • Outdoors
  • In variable weather?

You may not want a material that corrodes used in a stent any more than you want one that turns brittle in the cold traveling through space.

Quality and testing

One last DFM consideration is what kind of industry standards must this part meet? Is the manufacturing partner you chose ISO certified? Will third party testing be required?

Is your manufacturing partner aligned with third-party testers, such that they know the ins and outs of getting product pushed through? You’ll want to vet the compliance process as part of your DFM so your production timelines don’t get hung up for non-compliance.

Digital calipers, protractor, lead pencil, small machined parts laying on engineering drawing

Make the most of CNC machining with DFM

You can use the DFM process on new product development. DFM is also useful for cost savings initiatives on existing assemblies. The goal is to get engineering to work with production from the beginning.

The key to effective DFM is to utilize the current production capabilities to the fullest and advocate for new technologies when needed.

Design for manufacturability also ensures that designed components require minimal purchasing of new pieces of equipment, as well as avoiding never-before-used finishing processes currently only done overseas.

Production, in return, can alert the designer to any off-the-shelf items that would fit seamlessly or with a few tweaks in the protocol. You may also discover, through DFM, that the production team already manufactures a similar, non-proprietary, item. With those same tweaks, the volumes could be combined, and the startup process eliminated.

Contact United Scientific, and let’s start working together from the beginning to get you that better product at a lower cost.

Manufacturing our Defense: The History of Defense Manufacturing

A person is using an electric grinder to grind metal.


High abrasive grinder machining a cylinder and throwing sparks

Since the day the first explorers came to North America through to the American Revolution, we have had a need to manufacture supplies used to defend ourselves from harm and to stand up for our ideals.

The American Industrial Revolution started soon after, in the mid-1800s, and although focused on agriculture and textile mechanization, it would ultimately lead to the modern factory.

Inventions, such as the steam engine, emerging at the same time propelled production efficiencies forward, reducing labor costs, and decreasing prices, allowing access to a whole new sphere of customers.

A short half-century later, World War I would come to fruition, and the worlds of defense and manufacturing would begin to merge.  Defense manufacturing is one of many industries United Scientific serves.  Contact us today to learn more about the current state of defense manufacturing or read on to learn more about its history.

Defense manufacturing history in a nutshell

Pre-World War I

Before World War I, we relied on arsenals of ground weapons and naval armadas to protect us from unfriendly fire. However, during this period in history, new technologies emerged, like the light bulb, the telephone, and wireless transmission devices like the radio.

While the development of these technological advances came into play, so did improvements in manufacturing. Milestones such as Ford’s production line would set the benchmark for large volume production of complex parts and assemblies.

Black and white drawing of metalworking, turning bench lathe

World War I

At the start of World War I, the US only supplied foreign force allies with military equipment. The adoption of mass production lines, like those in the Ford plant, changed that. In factories everywhere, these mass production lines became the norm, and the US began providing arms, ammunition, and military vehicles, as well as military supplies, to allied forces until we entered the battle ourselves.

After World War I, the US began protecting its interests around the world. Manufacturing capabilities were rapidly expanding across the globe as well, and that included those producing military stockpiles.

Up until this point, most military products were designed and produced within the US armed services themselves. But as the needs became higher and the weapon systems became larger, design and production were outsourced to the private sector. Here, state-of-the-art manufacturing technologies arrived for both commercial and military endeavors.

World War II

In anticipation of World War II activities, the US government expanded existing plants or built new production facilities.  Many Government Owned, Contractor Operated (GOCO) facilities launched, and existing commercial manufacturing plants converted to military production.

With the end of World War II, the production of ammunition and military equipment slowed down significantly, if not shut down. Many plants reverted to manufacturing commercial goods in to keep themselves and the economy booming.

The Cold War

Christened initially as the National Military Establishment in June of 1947, the name became The Department of Defense (DoD) in August of 1949.

The DoD tackled re-aligning the individual armed forces and associated civilian agencies. One effect of the resulting re-organization was that under-utilized equipment and supplies collected dust in storage, or were destroyed.

Due to downsizing, the US was unprepared in its needs for current weaponry at the start of the Korean War. The Defense Production Act of 1950 became law to make sure that a similar shortage would not happen again.

That act provided funds to ensure that new defense materials would always be available and new production methodologies were continually brought into facilities.

As we moved through the Cold War Era, alternative weaponry development took precedence. Then the Space Race began, and so did the need for even more sophisticated componentry.

Up-and-coming weapon componentry was so complex that it could not be manufactured on existing equipment.

As part of the Defense Production Act, the Manufacturing Technology (ManTech) Program was established in the late 1950s, championing the development of new manufacturing processes and tools.

The end of the Cold War brought with it an end to the support for massive military expenditures.

The resulting funding constraints culminated in mergers across the country of military and commercial entities in order to diversify product offerings and consolidate applicable technologies. The distinction between military and commercial manufacturers continues to soften, especially for those shops creating space and communication systems.

Male engineer wearing virtual reality headset and using hands to manipulate a 3D machine part model

Current state of affairs

According to several sources, we may still be in the Third Industrial Revolution – the Digital Revolution – but we are also on the brink of the Fourth Industrial Revolution.

Technologies such as artificial intelligence, augmented reality, robotics, and 3-D printing will once again change how we create the products we need now, and how we manufacture products going forward.

There may be an ebb and flow to world events affecting the necessity of defense manufacturing. There may be revolutions within the industrial world itself. However, there will always be a need for timely, cost-effective, quality production.

Part of a long-standing history

In our current state of affairs, the defense industry still relies on its manufacturing partners.  Those partners still must deliver:

  • Precision manufacturing
  • The highest quality available
  • Accurate production timelines
  • Documented components that can pass all regulatory certifications
  • Mixed volume complex production

United Scientific has been producing on these deliverables for over 70 years and is part of the long-standing history of defense manufacturing.

Our St Paul facility is up to date with the latest CNC technology, finishing processes, and inspection equipment. We offer a wide range of services including:

  • Prototyping
  • Machining
  • Milling
  • Centerless grinding
  • Plasma cutting
  • Welding
  • Aluminum casting
  • Heat treating
  • Coating and plating
  • Inspection
  • Assembly
  • Supply Chain Management

Our men and women in the military deserve the best equipment and supplies we have to offer. They deserve the best equipment available to keep them safe while they keep us safe.

There is no margin for error in weaponry and component production. The lives of many individuals depend upon having flawless componentry at their disposal. “Keep our service-people safe and bring them home safe,†that is our true end-run goal.

Contact us today to discuss how we can help you navigate these industrial revolutions to manufacture the highest quality parts you need.  We’ll assist you to produce the safest and most accurate supplies our military needs.

How to Choose a Precision Machining Partner

Two puzzle pieces that have been connected to one another.


Silhouette win win

There is nothing better than peace of mind. When it comes to your business, this is far and few between. Start your journey to finding a trusted precision manufacturing partner. Precision machining is, as it says, precise and needs a trustworthy partner with credentials and expertise to back you up in your precision machine shop. 

A partner is an endeavor laced with unknowns and new routines for everyone during and once implemented. CEO’s to quality control to CNC machinists are going to be affected by the change; choosing your partner correctly the first time is your goal. 

United Scientific Inc in Minnesota is an ISO 9001 registered and certified precision machine shop. Specifically, United Scientific Inc has an internal audit program that excelled tremendously; take a look at the report here.

If you are considering a partner for your precision manufacturing machining requirements, make sure to continue reading. 

Frame of Mind series. Composition of human face wire-frame and fractal elements with metaphorical relationship to mind, reason, thought, mental powers and mystic consciousness

Knowledge

The cream of the crop is the dream of any business, from the employees to the equipment and technology. Your product must produce meticulously precise results, and there is a deadline looming at every turn. 

The collective expertise and experience of the team you choose must be just that, the cream of the crop. Programmers, machinists, CNC experts, and so many more positions are required when producing the absolute best product on time and within budget. 

Do your research on the potential partner before committing to a company that may set you back in production time. The last potential problem you want to take on is an unreliable partner who has not been in the industry for a long time. 

United Scientific has decades of experience with combined totals of 70 plus years within the company. Expertise is just one aspect to consider, technology and equipment must be at the forefront of thought as well when expanding your production numbers. 

Expertise is essential if the part needs fine-tuning to streamline the process and, ultimately, a better bottom line. A business partner must know the industry, their equipment, and they must be on your side. 

Caucasian Lathe Machine Technician with Wrench Trying To Adjust Machinery Elements.

Equipment and Technology

Who knew we would need to upgrade and maintain technology and equipment as much as we still do? This one crucial consideration puts a hole in a budget challenging to swallow. When researching a partner, make sure they upgrade regularly and continually update outdated machines. 

A precision machining partner must be well versed in CNC machines for the most precise results. The CNC machine integrated into the industry, and your partner must be vetted in this machine that controls them all. 

Read on: What Do the Letters “CNC†Mean and How Does CNC Machining Work

As we all know, technology tends to go through a revolution every two weeks, and we must consider a partner with the capabilities to keep up with the ever-changing environment. Take into account the technology the potential machining partner has in place and the technology you require for production. 

Non-machining experts could have trouble with everyday computers in one way or another. A CNC expert has specific instructions to follow, maintaining efficiency and effortlessly working with other team members in a time constricted environment. A CNC team is essential for a precision machining partner.

A new partner can bring expansion, opening doors left and right. The wrong partner can bring frustration, ending an exciting moment of your company expanding. Use a partner with history who can back you up when you need it the most. United Scientific Inc will not disappoint with a track record to prove it. 

businessman doing yoga in lotus pose

Kept Relationships

Yes, relationships. Instead of the “service†word, look for a partner who has connections with their clients. A bond is more than a screen to screen conversation; look for an accountable partner who you know by name and face.

It’s known throughout the psychological world that business relationships are better when they grow as an actual type of friendship. Business is business, although sometimes it’s a relief to break away for some life outside of work. 

Though it is frowned upon to make mistakes in any industry or personal life, having a partner who learns from them and listens to their clients and partners alike moves production along. On the other side, employees can be too scared to bring up a mistake, resulting in a halt in production until the issue resolves. 

Employee relationships are just as meaningful as the head honchos getting along. Staff members are only going to work hard when their relationship is in good standing with their employer. Your partner’s employee’s happiness can bring out more production; take a peek inside their facility when looking into your machining partner. 

These small but impactful relationship goals for your potential precision manufacturing partner matter in your decision and, United Scientific Inc has employees with decades loyal to them and many more on their way. 

Break it Down

Expertise, technology, and relationships are only a few of the points to weigh when choosing a precision machining partner. Don’t make a choice lightly as it is costly to switch again and again, not to mention taxing on your employees. 

Make sure to research for the most expert and knowledgeable partner for precision machining. As the title states, precise machining requires machinists and programmers who have the experience you need. 

Ask questions about the equipment in use, training of the employees for the machines, and get some partner or client reviews. With the evolving industry of machining, having added the CNC machine, what’s next? 3D Printing?

Read more about the future of manufacturing in “The World of Modern Manufacturing: Is There a Stopping Point?â€Â 

It’s hard to say where we will be in 15 years with the changing world of computers supposedly making our lives less complicated. These machines are essential for a partner in the industry and will continue to be a necessary part of the industry.

What do CNC Machinists do?

A cnc machine cutting metal letters with a drill.

 

Engineer hand on industrial keypad

A computer numerically controlled (CNC) machinist is a job you may have never heard of before. This job is essential to the manufacturing of many common, household goods and machinery. For more information on what CNC machinists do, a manufacturing quote, as well as employment opportunities, visit United Scientific INC online now.

What Does a CNC do?

Now that you know what CNC stands for, you’re probably wondering what does one of these machinists do, exactly?

Simply put, CNC machinists help create parts for larger products by mapping out the specifications of these parts on computer software. The instructions the operator inputs then give an instrument operating instructions, and the ability to make these machine parts.

These commands that are created by an engineer control the speed, movements, and other factors to create the perfect product, whatever it may be. CNC machining is the result of technology and man-power working in total harmony

For example, a computer numerically controlled machinist doesn’t manufacture a new car. They are responsible for a smaller piece of a car–something like a fuel injector or upper shock mount. CNC companies and machinists produce some of the smaller, yet critical parts, that make up all cars.

These machinists use a variety of equipment to create each product or prototype. Some of the different machines they utilize are::

  • Milling
  • Turning
  • Waterjet cutting
  • Laser cutting
  • Turret punching
  • Plasma cutting

Additionally, there are a plethora of materials used in CNC machining. Some materials you may see on the job are: 

  • Brass
  • Titanium
  • Aluminum
  • Copper
  • Stainless steel
  • Steel
  • PVC
  • Polycarbonate

The number of unique products that machinists manufacture, and the equipment they use to make those products can almost guarantee that no two CNC positions are the same.

Closeup of generic CNC drill equipment. 3D illustration.

What Industries Use CNC Companies?

One of the most exciting things about computer numerically controlled manufacturing is the variety of industries that utilize their services. With each new client, new products need to be developed and manufactured, making each product and day a little different.

Here are some of the industries that utilize the services provided by a CNC:

  • Construction
  • Automotive
  • Defense
  • Medical Devices
  • Food Processing
  • Transportation
  • Recreational Equipment
  • Agriculture
  • Aerospace Technology
  • Oil and Gas

Amazing, isn’t it? CNC machining is a crucial component to almost all modern product manufacturing.

What Makes a Good CNC Machinist?

It turns out that certain qualities correlate with being a fabulous computer numerically controlled machinist. 

If you find yourself being excellent at:

  • math
  • have great control of manual dexterity,
  • maintain extraordinary attention to detail
  • have remarkable problem-solving skills, 
  • have a significant understanding of computers
  • preserve superb physical stamina

Being a CNC machinist may be the dream job you never knew you wanted.

CNC machining is a career that is the perfect combination of creativity and practicality and works well for those when an aptitude in mathematics, sciences, engineering, and technology.

Worker pressing programming buttons on CNC machine control board in factory

What Does it Take to Become a CNC Machinist?

Does the world of CNC interest and excite you? Here’s how you can become one.

While each employer will have different requirements for hiring, there are many paths that you can take to pursue becoming a computer numerically controlled machinist.

Typically, some higher education is required to start working within CNC, specifically areas of math, engineering and computer sciences. Some degrees that may work well for following a CNC career path are machining and manufacturing, industrial engineering and industrial automation engineering technology.

Furthermore, an apprenticeship through a trade school or community college program will skyrocket your CNC career to success. These programs last for roughly four years and frequently are paying while you are taking classes and learning critical on-the-job skills.

An apprenticeship-style education environment is indispensable in careers like computer numerically controlled machining. They are so useful because it may provide you with a job opportunity with the company you apprenticed with, once your program and degree are complete. 

Do you see how huge this is? With a paid apprenticeship to become a CNC machinist, you can focus on gaining experience and knowledge in your field without the additional burden of making an income. On top of that, it creates a higher education environment where you’’ start out making money, rather than in piles of student loan debt.    

Here are some colleges to look into to kickstart your CNC career:

  • Universal Technical Institute
  • Lincoln Tech
  • Sullivan University
  • HoHoKus School of Trade & Technical Sciences

Once you’ve landed your dream job as a machinist, you can expect a median salary of around $43,630. That CNC machinist salary will vary depending on your place of employment and cost of living. 

Summarizing it All

This unique career path is ideal for those who love math, engineering, science technology, and hard work. With so many educational and career opportunities to capitalize on, this career is tailored for those who dream of being innovative.

CNC machining is the perfect combination for those who enjoy working closely with technology while still getting to be hands-on. If you are looking for a job with a new problem to solve every day, machining may be the career path for you.

For more information on CNC machining, manufacturing quotes, or employment opportunities contact United Scientific INC. in St. Paul Minnesota today by phone at 651-483-1500 or by email at [email protected].

 

 

 

What Does a CNC programmer do and is it a good job?

A man in yellow hard hat using laptop computer.
Engineer using laptop computer for maintenance automatic robotic arm with CNC machine in smart factory.

Have you ever taken time to think about how the big machines perform tasks “independently†as nobody is there to oversee the process? Who develops the programs that control the processing of plastic and metal parts in the manufacturing industries? The answer: a CNC programmer. 

At United Scientific, these are the people that keep all our processes moving to manufacture aerospace parts, medical devices, vehicle parts, recreational equipment, and more. Visit our website for more information on what we do and how we do it.

Now, many don’t know the meaning of CNC manufacturing, let alone what it does and why it’s crucial to any manufacturing industry. 

We’re going to share information with you about what a CNC programmer does and the salary you might get if you decide to pursue it as a career.

A little about CNC Manufacturing

For decades, we have seen giant leaps in technology. We’ve had many inventions taking place almost every day for the betterment of our living.

It’s still uncertain what we will have in the future, but we keep our faith in technology as it slowly unravels that mystery as the days go.

However, with CNC manufacturing, you can predict the future of CNC programming. Research that has been done to determine this comes to one end – It will be a highly sought-for career in the future.

CNC manufacturing first came into the limelight in the late 1940s, and since then, it has tremendously transformed industrial production.

Automation is one of the major driving forces of CNC manufacturing. What manufacturers designed almost a century ago is different from what we make today. 

As automated manufacturing continues to take foot in the industrial field, new inventions come, and CNC programming has a significant part to play.

Who is a CNC Programmer

CNC programming in full means computer numerically controlled programming. In other words, the tools or machinery parts are controlled by a computer program to manufacture different products.

The work of a CNC programmer in an industrial line is to create program codes or instructions to run the machine that shapes or cuts products like aviation, automobile, or industrial parts.  

Therefore, a CNC programmer is very vital in any industry. If they are not there, nothing can move. They foresee every manufacturing process and quickly come in when they notice a technical hitch in the machines.

At the Factory: Female Mechanical Engineer Designs 3D Engine on Her Personal Computer, Male Automation Engineer Uses Laptop for Programming Robotic Arm.

A Career in CNC Programming

Since CNC programming is becoming one of the most coveted jobs, being a top-rated CNC programmer is an uphill battle. However, the rewards are worth the hard work. 

The industrial world is getting exposed to the importance of CNC programming. With a 16% yearly growth rate between now and 2026, opportunities are multiplying. The employment gap is growing larger as many people have not come to the knowledge of this goldmine.

Before you embark on this career, there are some qualifications that you should possess.

To begin with, you should be good in technical subjects or at least show some interest in them. You should have a prolific mechanical aptitude and be able to work independently. 

Have an open mind to welcome new ideas to help the technological world at large.

As a CNC programmer, you have a high chance of getting into other highly coveted careers like computer programming, software productions, or information technologies. The remuneration for such jobs ranges from $50k to over $100K in some reputable companies.

Now, CNC programming is at par with these careers. According to Glassdoor, a CNC programmer salary ranges from $40k to $80k, with an average of $58,328 per year. 

Reputable companies are ready to part with over $85k year to pay their programmers. CNC programmers are paid these hefty amounts because employers understand the magnitude of the tasks they perform.

Advantages of becoming a CNC programmer

CNC programming has impacted the manufacture of materials significantly, creating significant advances over the old ways of manufacturing. Some of the improvements seen with CNC are;

  • Accuracy in Production

Since man is to error, machines are not. According to studies, humans have a 23% chance of making a mistake, while mechanical devices can only manage 8%. 

However, the 8% error happens if the system did not undergo servicing. So, the error is entirely on man.

With this in mind, a machine manufactures according to the variables keyed into the system. The results of any product that has gone through the hands of a CNC programmer are accurate and uniform.

  • Operation is Safe

Remember, the work of a CNC programmer is to make numerals in the computer that operates the machines. No one has to operate the machine manually, which would expose them to potential danger. 

In short, the CNC programmer works behind closed doors and leaves every work for the device.

  • The Number of Operators is Minimal.

Once hired as a CNC programmer, you are often doing the work of at least five people. Usually, to manufacture something, you need a supervisor, technician, electrician, and a welder. 

As a CNC programmer, your job is to input the concept of the four people while the machine does the whole task.

  • Uniformity in Designs

Unlike humans, a machine manufactures a complete replica of what it has produced before. In CNC production, every product made is precise; why? The next product manufactured uses the same numerals to create a new product.

  • Reliability

Whenever a CNC programmer is absent, it doesn’t mean that the factory will stop working. The codes and schematics are already in the system ready to go, keeping the industry busy and able to meet customer demands.

Worker controls the CNC machine

Bottom-line

CNC programming is a game-changer in the manufacturing world. The benefits of a CNC programmer to any firm are countless, and their tremendous contribution to a production firm is irreplaceable. 

Would you want to have a look at the work of expert CNC programmers? If so, you can visit our site, United Scientific and explore the world of CNC manufacturing, its products, and learn more about a CNC programming is all about.

What Do the Letters “CNC” Mean and How Does CNC Machining Work

A machine cutting metal with the word cnc
CNC

CNC Machining Services Decoded

If you’re new to the manufacturing or precision machining world, there’s a unique alphabet to learn and assimilate. As machining technology evolves, so do the language, skill requirements, and associated competencies of that technology.

In this article, we’ll take a trip through several industry acronyms. We’ll define them for you, and help you understand how you might pursue a career in the leading-edge manufacturing sector of CNC part-making.

At United Scientific, we service the precision machining needs across a wide variety of industries. We are a synergistic partner in projects large and small, with an accuracy rating of 99+ percent. Call us today to begin collaborating on the parts you need to make your business go.

CNC: Computer Numerical Control

Here we go.  Let’s begin with the way parts are machined on both large and small scale with Computer Numerical Control manufacturing.

In the machining methods of yesteryear, a person with a tool was responsible for designing and cutting parts to fit into a finished product. 

Even though the tools in question could use automation to a degree in a production line, a person or team was responsible for manually telling the device what to do and how to do it. Directions for metal or other base material cutting and machining were manually entered into the cutting process. 

This type of implementation meant higher personnel costs, lower product accuracy, and potential limits on large scale projects.

With the advent of CNC manufacturing, a computer software program translates design specs from another program into numbers that cutting machines can read. The numbers correspond to a three-dimensional graph (picture a grid) and direct the tool to make precision cuts in whatever material is being shaped. 

The cutting machine applies the grid numbers to the cuts it makes in the base material and creates a highly accurate cut without human intervention beyond the original coding for the part.

The CNC lathe cutting the steel cone shape parts. The hi-technology automotive parts manufacturing process by turning machine.

CNC Machines

CNC cutting machines come in many shapes and sizes.  Here are a few that we commonly see in today’s factories:

  • Mills: a piece of material moves past a spinning, stationary blade that slices off portions of the ‘blank†as it moves by. A CNC mill can cut in three dimensions.
  • Lathes: In this application, the material to be cut is placed on a spindle and spins at high speed. A stationary blade slices chips of the material as it rotates. An example of a product that’s precision-cut by a lathe is a chess game piece.

Machining a piece of material on a lathe is called “turning.†Lathes are a little less flexible that mills, in that they cut in only two dimensions. However, they come in many variations and remain incredibly functional in CNC manufacturing.

  • Routers: A variation on a mill that cuts wood exclusively
  • Plasma cutters, waterjets, and lasers: all are used to cut flat materials like sheets of metal or plastic
Industrial cnc plasma cutting machine with sparks

CAD and CAM: the software that makes CNC happen.

We can’t discuss CNC manufacturing without also defining CAD and CAM programs. CAD means Computer-Aided Design. CAM means Computer-Aided Manufacturing. CAD and CAM are the drivers for many CNC functions. 

When a product is in the design phase, a CAD designer crafts the shape, size, and specs for the product in the CAD software program. 

Once the CAD program creates the product, it must be translated into G-code. G-code is a programming language that CNC machines understand and use to direct the cuts they make into a block or sheet of material.

Are humans still required to mass-produce products?

Today, many manufacturing machines require different kinds of supervision by humans. That’s where our career discussion begins. 

Gone are the days of large teams of people working on lines and supervising quality. Now, computers tell the machines what to do with greater precision and efficiency. 

There is plenty of human involvement in manufacturing, but it’s at a different level.

The jobs associated with making things center in telling the machines what to do. Translating CAD language into G-Code that cutting devices can read is one example of a machining career path.

Design work in CAD and CAM programs is another production profession. Teaching and training other people computer-based programming and design is also an essential career path in the manufacturing sector.

Engineer, Constructor, Designer in Glasses Working on a Personal Computer. He is Creating, Designing a New 3D Model of Mechanical Component in CAD Program. Freelance Work

Production Jobs and Salaries

In today’s production sector, it pays to have technical knowledge and skills.  Four of the top nine manufacturing jobs in the US today include:

  • Mechanical Engineer: A person who designs, researches, builds, tests, and inspects mechanical devices. This job pays an average salary range of $64-$89K per year and requires the most education. A Bachelor’s or Master’s degree is the norm.
  • Instrument Technician: Someone who inspects, repairs, monitors, and calibrates machining devices. This role requires a high school diploma, but an associate’s degree or higher may be preferred. The salary range is for an Instrument Tech is $40-$62K per year.
  • CAD or CAM Draftsman: These are the designers for parts and products. Technical drawing, listening, and collaboration are skills a draftsman must have. You’ll be working extensively with engineers, architects, and product manufacturers. A CAD certificate or associates degree is required. A typical salary range is $37-$49K per year.
  • Quality Control Inspector: These employees perform spot checks on products to make sure they are maintaining consistent quality and accuracy. As an inspector, you’re responsible for making sure the parts produced in the CNC process are a precise and consistent fit for the client’s requirements. A job like this requires a high school diploma and sometimes an Associate’s degree. A typical salary for an inspector is $29-$41K per year.

At United Scientific, Inc., we pride ourselves on our collaborations. We partner with large companies to fill part orders from small to large, with incredible accuracy at greater than 99 percent. 

Our clients know they’ll get quality precision-made parts with each order they place. We deliver on time at competitive pricing. We service our clients with professionalism and reliability every time. Call us or visit our website to get started planning your next precision part order.

 

 

 

 

The World of Modern Manufacturing: Is There a Stopping Point?

A person holding an earth in their hands.
Abstract palm hands touching earth at night on sunset city background.

Modern manufacturing companies across the globe continue to innovate their industries with its ability to morph from impossibilities into legitimate and precise, computer-controlled results. The introduction of the computer was the catalyst driving society to recognize our potential for incredible growth. United Scientific Inc. has been in business for over 70 years utilizing the very best for their customers, call today to get started!

There are computer-controlled manufacturing methods today, known as computer numerical control or CNC as opposed to the labor-intensive and incredibly unsafe practices of the industry’s first revolution. We are now in the fourth, known as industry 4.0 referenced on-the-dot for the integration of computers into manufacturing. 

Subtractive, additive and formative are methods of manufacturing used in the 21st century by businesses depending on their field. United Scientific Inc in St. Paul, MN uses top-of-the-line equipment, including the highly trained quality control department. The quality control department ensures every order is filled and delivered on time, as it should be. 

Types of manufacturing

lathe machine in a workshop , Part for equipment in the factory manufacturing metal structures

Additive, subtractive, and formative methods are the three categories of manufacturing. 

Subtractive manufacturing is the most utilized type of production today. Although 3-D printing has had many strides in the last decade, the cost and manufacturing time have held 3-D printing back from entering the mainstream on a full scale. 

3-D printing is a type of additive manufacturing – adding material layer by layer to eventually build a product. Powder metal is one substance used in additive manufacturing or 3-D printing, layering the material layer by layer until the design is complete. This method is captivating, although too slow to compete with the widely used subtractive process combined with the CNC machine.

The opposite is Subtractive method – removing material from the object the machine is shaping. Removing the subject medium being the most efficient type is utilized by several means, including laser and router. Computerized Numerical Control devices are often used in modern manufacturing for items such as gears, proprietary designs, everyday bolts, and collaborate designs. 

Third, Formulative manufacturing – this is molding or casting material to solidify into negative space, forming a positive result. Resin molds are popular these days, as well as an example of a formative method of production. The resin is poured into a mold and left to solidify, leaving the positive image. 

Products you would see created with these methods commercially use a CNC machine, machinist, and programmer for quality and quantity efficiency. Machinist learns the individual devices they use in conjunction with the CNC component. United Scientific Inc., for example, makes sure their employees are well informed, trained, and certified for their state-of-the-art equipment. 

What is Relatable to Me?

CNC projects or products are most commonly internal parts of a whole, also known as subtractive manufacturing. The general public would see a CNC router, producing engraved wooden signs in contrast to hand-carved signs seldom produced. Routers can create some artistic pieces using a variety of materials. Everyday modern items you need a CNC device to produce: 

  • Your smartphone
  • Aeronautics
  • Military equipment
  • Weaponry
  • Production line machines
  • Vehicles
  • Medical equipment
  • Some styles of artwork

The items listed above are the completed product in which computer-controlled machines cut, lathe, mill, and drill on several axes’ for the unbelievably fast result in modern manufacturing today. Given this technology and the introduction of the additive method 3-D printing, we are to expect surprising things in the future. We may even see flying cars from The Jetsons finally. 

CNC machines in modern manufacturing are rapidly filling the demand of other manufacturers and advancing their output. Integral components created using computer-assisted technology has grown the industry, making parts efficiently, giving the end-user access to products once unavailable. The ability to mass-produce a mechanism is a great leap forward for humankind. 

On a Serious Note

Modern manufacturing is at the beginning of a historical jump into the future. Science is at the forefront of this innovation craze, tech science to be precise. Artificial intelligence has been introduced on a publically usable scale, something we could not fathom without the technology innovations of the last few decades. A computer and printer can be the future of manufacturing, sending objects through a data stream printing on the other side.

We are witnessing the first-ever devices, such as Google Assistant and Siri, the general public can experience in their own homes. These machines continue to learn the habits of its user, sometimes knowing what you need before you do. Environment concerns will propel the modern manufacturer to upgrade and innovate, thus a need for additional development, safer equipment, and quicker turn-around times. 

To Sum it Up

In terms of technology advances for manufacturers and the public alike, there are no limitations. Scientists, innovators, manufacturers, and programmers have created a new world to understand. Our goal as humans is to advance our knowledge, expand the possibilities in our minds, and explore the depth of so-called limitations we used to believe wholeheartedly.

Artsy CNC projects are fun and exciting at home with the right tools, equipment, and flare for computer design programs. The non-artsy person can dive into the world of creating by learning the software and applying it to their potential art! If you require large amounts of product, product storage, or design expertise, call United Scientific Inc. for your manufacturing requirements. Their results speak volumes. 

Continuing population growth will ensure the need for manufacturing far into the future. Clearly stated there is no stopping point for our imaginations. The world of modern manufacturing will only grow – growing into a future we may not be able to imagine just yet. With 3-D printing well on its way to becoming a resource for building, we may see the far future sooner than we could have dreamed. 

CNC Career Training: Work in an Exploding Field

A close up of the word future on gears

 

Do you love working with computers and using technology to create? Do you enjoy using your imagination to solve seemingly unsolvable problems? Do you hate working just to make ends meet? If so, a CNC Machinist career is perfect for you.

United Scientific Inc. can help you get the CNC Machine training you need to become a highly-skilled CNC Machinist.  

WHAT IS CNC?
Industries worldwide have used Computer Numerical Control since the 1940s, though many people have never heard of CNC.

Before the arrival of advanced CNC machining, various manufacturing aspects such as mills, drills, and routers needed operators. The operators read specifications and drawings to determine the best and quickest approach to create and produce the necessary parts.

Technological advancements, such as 3D printing, led to many improvements to industries worldwide. Today, instead of manually administering every step in the manufacturing process, CNC Machinists can simply program CNC machines to interpret CAD files.

As a CNC Machinist, you’ll play an indispensable part in manufacturing processes. 

WHAT DOES A CNC MACHINIST DO?

Group of young students  in technical vocational training with young female muslim teacher

As a CNC Machinist/Programmer, you’ll use computers and the latest manufacturing technology to produce parts and products for a multitude of diverse industries and companies. 

CNC Machinists often use blueprints and 3-dimensional computer technology to develop the software used to create the parts and products used in everything from the aerospace industry to food services.

Computer integration and advanced automation have created a demand for more complicated parts and products to be produced faster than ever. 

If you work at or have worked at, an engineering or manufacturing company, you’ll no doubt work with CNC at some point. With the right credentials, you’ll earn promotions and gain more financial security and stability.

CNC EMPLOYMENT OUTLOOK 

The CNC Machinist career field continues to grow every year. According to the Bureau of Labor Statistics, “employment of tool and die makers is projected to decline seven percent from 2016 to 2026.†

However, during the same time frame, new technological advancements and innovations, including CNC machining and programming, have created a need for employees with CNC machinist and programming skills. 

Employers continue to state the difficulties in finding employees with CNC machinists and programming skills. Entry-level positions offer immediate employment and an opportunity to attain valuable work experience as a CNC machinist.

The outlook for CNC Machinists sounds good, but success in the field first requires the necessary training.

CNC MACHINIST TRAINING

Education is often a crucial factor in finding excellent jobs. Although a degree or certificate in CNC machining isn’t quite a “must-have,†it does add a significant benefit in helping you get your foot in the door.  

The modern CNC Machinist needs to have the following skills at a minimal:

  • Basic understanding of electronics
  • Computer literacy
  • Knowledge of basic physics
  • Time Management
  • Problem-Solving Skills
  • Team Player

Employers are seeking individuals with formal training. Formal training may include apprenticeships, certification, or post-secondary training. Many employers, mostly for liability reasons, seldom hire machinists who don’t possess some type of formal training.

In the United States, many vocational training facilities and trade schools have incorporated courses accredited by the National Institute of Metalworking Skills. NIMS accreditation “is the nation’s only distinction for excellence in metalworking training as based on NIMS industry-written, industry-approved skills standards.â€

The majority of courses are designed to educate and provide hands-on instructions for various types of CNC topics. Some subjects include: 

  • Introduction to CNC Machines 
  • Basics of the CNC Mill 
  • Computer Numerical Control Fundamentals
  • Geometric Dimensions and Tolerancing 
  • CNC Manufacturing Shop Management
  • Lean Manufacturing 

Mastery of CNC Machinist and programing training offers multiple options for employment in different areas, including:

  • CNC programming
  • CAD-CAM system programing
  • CNC service technician
  • CNC applications engineers
  • CNC school instructor 
  • CNC Lathe Operator
  • Shop Supervisor
  • Management

If attending classes in a formal setting is not possible due to time constraints or budget, don’t fret. There are many online CNC training courses available, and some offer free video training.

Individuals should ensure they receive the skills and training needed to perform CNC machining whatever training method they choose. Training may include inspection and safety regulations, metal cutting, work holding, programming, and math.

CNC Machinists aren’t only in the manufacturing industries. As automation is a regular part of everyday life, it is not hard to imagine that CNC Machining technology is by industries affecting everyday life. These industries include:

  • Banking & ATMs. 
  • Transportation & Aerospace
  • Cell phone towers
  • Gas Stations
  • Agriculture
  • Smart Home automation
  • Medical 
  • Broadcasting/Television

As you train for your CNC Machinist certification, you’ll gain a wide array of skills, knowledge, and training to help keep the world running at peak efficiency. 

THE FUTURE OF CNC

From robotics to 3D printing, the global demand for CNC-machined products continues to grow as innovation and technology improve the way parts and products are manufactured. 

There is even a growing demand for At-Home CNC, offering small business to enhance its product development at faster and cheaper rates.

Being a CNC machinist can be a rewarding career for those with the right skillset. In today’s technology-dependent world, further automation of offices and factories, advances in the medical industry, and advanced scientific research will only continue to spark the demand for skilled CNC Machinist and programmers.

UNITED SCIENTIFIC INC

Here at United Scientific Inc., we “Manufacture Results,†firm in the belief that remaining “Scientific in Process, United in Purpose,†enhances our success rates. Located in St. Paul, Minnesota, we’ve built a solid reputation for being the best CNC and precision machining entity around. 

With dedication to machining the best precision products, we strive to prepare for future innovations and industry demands. At United Scientific,  having the right CNC machinists is essential to our success. Therefore, we are committed to hiring the best machinists, and programmers only help us stay at the forefront of the machining industry.  

Our machinists understand CNC tasks requires attention-to-detail and discipline. They know it requires focus and the ability to overcome obstacles to ensure we meet our clients’ specifications.

The world will continue to change as technology continues to improve and enhance our everyday lives. At United Scientific Inc, we will continue to evolve, and stay current with innovation, and prepare for the future. 

CALL US!
To learn more about our services, contact us at 651-483-1500, or email [email protected].